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In her Shoes: Gendered Labelling in Crowdsourced Safety Perceptions Data
from India

A streetview from New Delhi, India.

In recent years, there has been a proliferation of women’s safety mobile applications in India that crowdsource street safety perceptions
to generate ‘safety maps’ which are used by policy makers for urban design and academics for studying mobility patterns. However,
men and women’s differential access to information and communication technologies (ICTs), and the distinctions between their social
and cultural subjective experiences may mitigate the value of crowdsourced safety perceptions data and the predictive ability of
machine learning (ML) models utilizing such data. We explore this by collecting and analyzing primary data on safety perceptions
from New Delhi, India. Our curated dataset consists of streetviews covering a wide range of neighborhoods for which we obtain
subjective safety ratings from both female and male respondents. Simulation experiments where varying proportion of ratings from
each gender are assumed missing demonstrate that the predictive ability of standard ML techniques relies crucially on the distribution
of data producers. We find that obtaining large amounts of crowdsourced safety labels from male respondents for predicting female
safety perceptions is inefficient in a number of scenarios and even undesirable in others. Detailed comparisons between female and
male respondents’ data demonstrate significant gender differences in safety perceptions and their associated vocabularies. Our results
have important implications on the design of platforms relying on crowdsourced data and the insights generated from them.

CCS Concepts: • Human-centered computing → HCI design and evaluation methods; Empirical studies in collaborative
and social computing.
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1 INTRODUCTION

India, with a population of over 1.3 billion and over 30 thousand reported rapes annually, ranks as one of the least safe
countries for women in the world [2, 16]. Research indicates that roadsides are amongst the locations rated most unsafe
by women from the point of view of sexual harassment [29, 30]. The horrific gang-rape and murder of a 23 year old
female while travelling on a bus in December 2012 catapulted women’s street safety issues to the center of attention for
both citizens and policy makers. The increasing visibility of this issue led to public demand for better measurement and
tracking of safety parameters on Indian streets.

In response to these demands, a number of mobile applications targeted towards women’s safety have emerged in
recent years. One of the tools used to capture the level of safety of a local context is crowdsourcing. For instance the
popular Safetipin platform collects user-inputed annotations of safety perceptions and related factors on local streets.
Another widely used platform, Safecity crowdsources locations where individuals experienced or observed incidents
of sexual harassment. In 2015, the central government of India launched the Himmat (which translates to Courage)
platform for women to report sexual harassment incidents that reportedly get relayed directly to police control rooms.

The aggregated information from such apps can be used to generate ‘safety maps’ of different neighborhoods and
streets in the city which are shared with policy think tanks and government departments as an input for urban policy.
Such safety ratings data have also been used in mainstream academic research as an input for modelling women’s
mobility decisions. For instance [5], using a combination of data sources including from Safetipin and Safecity, finds
that young females in Delhi make a trade off between college quality and safety concerns that arise while travelling to
and from educational institutions. She further finds that women are willing to pay more than men for transportation
costs to allay such safety concerns.

The use of crowdsourcing of subjective safety data is not restricted to the Indian context. Around the world too, with
the proliferation of mobile applications and cheaper data plans, the collection of crowdsourced safety perceptions has
been growing in popularity in a variety of contexts. Applications range from the reporting of street harassment (for
instance ‘Safe and the City’ which is headquartered in the United Kingdom and ‘Hollaback!’, an online community
originating from New York City USA) to the reporting of police brutality (for instance the ‘SafeSpace’ app originating
from Minneapolis USA whose tagline is ‘police the police’) and general neighborhood safety (the ‘Citizen’ app which
claims over 9 million users across more than 60 cities, mainly across USA). In the context of academic research,
crowdsourced street safety perceptions data collected via MIT Media Lab’s ‘PlacePulse’ platform has been used to map
urban perceptions in major cities across the globe [19].

From a computational perspective, the resulting datasets consisting of crowdsourced safety perceptions can be
used to train machine learning models which predict ‘safety ratings’ in out-of-sample streetviews. For example, the
‘Streetscore’ model utilizes data from the ‘PlacePulse’ platform to predict street safety scores for a million cityscapes
using a support vector machine model [19]. A subsequent version uses Deep Learning [8]. These models have since been
used as inputs to study other socio-economic phenomena including analyzing the physical evolution of neighborhoods
[18] and estimating their levels of gentrification [11].

There is by now a substantial literature on algorithmic and labelling bias across multiple contexts utilizing big data
and machine learning (ML) models with the largest prediction errors typically being associated with minorities and
Manuscript submitted to ACM
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In her Shoes: Gendered Labelling in Crowdsourced Safety Perceptions Data from India 3

under-represented communities. For instance [4] analyze gender differences in the context of content moderation on
online platforms. [6] evaluate bias present in automated facial analysis algorithms and find that the lowest prediction
errors are associated with lighter male individuals and the highest predictions are associated with darker females.
Via an ethnographic analysis of Delhi police’s data collection practices [17] elaborate on the types of biases that can
become embedded into a predictive policing setup. [14] find that women are far less likely to be shown a gender-neutral
ad for STEM jobs on social media. Such biases however have not been widely studied in the context of street safety
perceptions which are increasingly relying on crowdsourced data (see [25] for a notable exception).

In this paper we address the important research gap on algorithmic bias in crowdsourced safety data, while focusing
on a Global South context, that of India. We argue that while perceptions about the safety of a particular location
may be useful in deciding whether it is generally safe or unsafe, if such decision making is automated, then differing
gender perceptions about safety need to be taken into account and that demographic differences need to be carefully
considered during the process of data collection. If not, the resulting automation would be biased towards one or the
other demographic segment.

Our methodology consists of obtaining safety perceptions ratings and related data from respondents on a fixed set
of previously collected streetviews from Delhi. Participants in the survey consist of undergraduate and postgraduate
students at a reputed engineering institute in New Delhi. Using the primary data thus collected, consisting of 11, 200
safety perception ratings data from 224 respondents over 50 streetviews each, we run extensive simulation experiments
where varying proportion of labels from each gender are assumed missing. We compare predictive abilities of standard
matrix factorization models from the ML literature and demonstrate that predictions of safety perceptions depend
crucially on the distribution of the underlying (and observed) training data.

We find that obtaining large amounts of crowdsourced labels from male respondents has limited utility for predicting
female safety perceptions and in certain situations more labels from male respondents reduces prediction accuracy for
females. We also find significant gender differences in individual ratings (which are exacerbated for night-time images),
response times and vocabularies used to describe visual safety. Overall our findings demonstrate the pitfalls of using
crowdsourced data from mobile applications as an input to both public policy as well as empirical academic research.

Our findings have particularly important implications for public policy, especially given the increasing incorporation
of crowdsourced data as well as algorithms into public policy processes [22]. We demonstrate that there is an urgent
need to analyse potential bias in crowdsourced data [9], particularly from the perspective of the Global South which
has received woefully less attention in the scientific discourse around algorithmic fairness [23]. This becomes crucial
in economies such as India where access to Information and Communication Technologies (ICTs) is highly skewed
towards the male population [1].

The remainder of the paper is organized as follows. We describe our research design, including data collection and
analysis designs respectively in sections 2 and 3. Section 4 presents our detailed results and section 5 concludes with a
discussion on policy implications and recommendations for platform design, along with directions for future research.

2 DATA COLLECTION

Our research design involved the collection of street safety perceptions from a sample of female and male participants
over a set of fixed streetviews. In machine learning parlance we refer to the subjective safety ratings as “labels" and
the streetviews for which ratings were elicited as “examples". Data collection for the study consisted of 1) building
a repository of examples (streetviews) with visual and geographic variation and 2) collecting gender dis-aggregated
labels (safety perception ratings) from a sample of female and male respondents.
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2.1 Repository of Streetviews

Ratings for safety were collected for a set of images taken across various locations in New Delhi. These were images
of streets, localities, highways, markets and residential areas which were collected using district-wise crime statistics
available in the public domain1. District-wise crime statistics pertaining to cases of outdoor criminal activity including
stalking, voyeurism, rape, kidnapping, acid attacks, robbery, auto-theft and others were aggregated and each district
was ranked according to reported criminal activity. Using this ranking, four Delhi districts were shortlisted: North,
North-East, West and New Delhi. While New Delhi and North were the ‘most safe’ based on the crime data, North-East
and West were the ‘least safe’. These four districts were also found to be accessible and located within Delhi (e.g. any
‘Outer’ districts or ‘special zones’ were excluded). When taking the images, unofficial information about the safest and
most unsafe streets or localities in a district was solicited via informal conversations with locals including security and
police personnel. Thus the set of locations were characterized as follows: 1) safer streets in the safest districts (labelled
as ‘safe-safe’), 2) more unsafe streets in the safest districts (labelled as ‘unsafe-safe’) , 3) safer streets in the most unsafe
districts (labelled as ‘safe-unsafe’) and 4) more unsafe streets in the most unsafe districts (labelled as ‘unsafe-unsafe’).

Images were taken from these areas for our main survey, all during the day. The geo-location, date, time, district
name and street name were recorded at the time of taking the image using the Open Data Kit software 2 which was
installed on a tablet. The image quality of the resulting pictures was sometimes poor, hence identical pictures taken
using a better quality camera at the same time were used in the survey. Out of the number of factors affecting female
mobility that have been identified in the literature [15, 26], our study focuses on visual characterstics, particularly
heterogenity in the built environment. Thus, while taking pictures, the guidelines was to take street-level views (no
aerial shots or views from a height) and to the extent possible include a range of visual characteristics taken from
the literature on pedestrian safety [13, 20, 28] such as buildings, walls, greenery, parks, traffic, bus-stops, markets,
disarray, footpaths etc. A total of 50 images were curated for the main survey consisting of a range of spatial and visual
characteristics (comprising of 14 ‘safe-safe’, 12 ‘safe-unsafe’, 12 ‘unsafe-safe’ and 12 ‘unsafe-unsafe’ streetviews). The list
of localities from where streetviews were obtained is presented in Table 1 and the spatial distribution of the localities is
presented in Figure 1. For a subsidiary analysis, we obtained streetviews of 20 additional locations during the day, as
well as streetviews taken at the same location and perspective during night-time (i.e. about 2-3 hours after sunset). We
refer to this subset of images as the Day/Night set.

2.2 Gender disaggregated safety perceptions

Participants for the surveywere recruited from among undergraduate and postgraduate students at a reputed engineering
institute in New Delhi and exclude anyone unable to read English, lacking access to the internet or having any visual
impairment. From the list of respondents to an institute-wide email soliciting interested students, a randomly selected
subset of 125 participants who self-reported as female and another 125 participants who self-reported as male were
invited for the survey (no participant self-reported as "non-binary" or preferred not to answer). Of these a total of 106
participants who self-reported as female and 118 who self-reported as male took the final survey which was conducted
online and designed using jsPsych software. A pilot version of the survey was first conducted before finalizing the
set of questions for the main survey. A description of the different types of data that were collected in the study is
presented next.

1https://ncrb.gov.in/en/node/3009
2https://getodk.org/
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In her Shoes: Gendered Labelling in Crowdsourced Safety Perceptions Data from India 5

District Name Safe Localities Unsafe Localities
New Delhi Inner Circle C.P. Ridge Road
(Safe) Parliament Road

Jantar Mantar
North Rajpura Road Geeta Colony Flyover
(Safe) Roop Nagar Road Outer Ring Road ISBT

Shakti Nagar
Authority Road Inderlok

West Mayapuri Harinagar
(Unsafe) Narayana Punjabi Bagh

Vikas Puri Tilak Nagar
North East Shastri Park New Usmanpur
(Unsafe) Sonia Vihar Bhajanpura

Gokalpuri Khajuri Khas
Table 1. List of localities from which streetviews were
obtained for the main survey

.

Safe Spots in Safe Districts

All items

Unsafe Spots in Safe Districts

All items

Safe Spots in Unsafe Districts

All items

Unsafe Spots in Unsafe Districts

All items

Untitled layer

Safe Locations in Safe Districts Safe Locations in Unsafe Districts

Unsafe Locations in Safe Districts Unsafe Locations in Unsafe Districts

Fig. 1. Spatial distribution of localities from which
streetviews were obtained for the main survey

• Main survey: Perceived safety ratings for the set of 50 curated images were collected on a 5 point Likert scale
where 0 corresponded to ‘very unsafe’ and 4 to ‘very safe’. Image order was randomized for each respondent to
mitigate question ordering effects. Figure 2 presents a sample of safety ratings questions. The resulting data was
used to generate a safety perceptions matrix whose rows represent the 224 respondents and columns represent
the 50 streetviews. The entries in the matrix consisted of a total of 224 × 50 = 11, 200 ratings.

• Qualitative attributes: Respondents were asked to provide a list of image attributes to justify their ratings for
a subset of 10 streetviews each. This data was used to generate a qualitative dataset in the form of text data
which was tagged by gender of respondent and their safety rating of the streetview.

• Demographic Controls: Along with the safety ratings, basic demographic information about the respondents
including their gender, age, socioeconomic and educational background was also collected.

• Meta Data: The time taken to answer each question was recorded along with instances of participants exiting
full screen and/or opening other tabs while taking the survey.

• Day/Night survey: Safety ratings were also collected for the set of 20 curated Day/Night streetviews. Every
survey participant was randomly assigned to either the “Day" group or the “Night" group and was shown 20
additional images which were either taken during the day or during the night. As before, perceived safety
ratings were collected on a 5 point Likert scale. The resulting data was used to generate 4 additional safety
perceptions matrices – safety ratings from 53 female respondents in the ‘Day’ group (1, 060 ratings), 53 female
respondents in the ‘Night’ group (1, 060 ratings), 63 male respondents in the ‘Day’ group (1, 260 ratings) and
from 55 male respondents in the ‘Night’ group (1, 100 ratings).

3 DATA ANALYSIS

Using the main survey data, we first perform simulation experiments to analyze the predictive ability of standard ML
models when different proportions of labels from each gender are assumed missing. We then contextualize the results
of the simulations by analyzing gender differences in the associated quantitative and qualitative data from the survey.
A detailed description of the methodology followed is presented next.
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Fig. 2. Sample questions from the main survey.

3.1 Simulations

Drawing from the 11, 200 safety perception ratings in our dataset, we simulate the downstream effects of gender
imbalance in crowdsourced data on the prediction accuracy of standard ML models. To do so we utilize the safety
ratings matrix (denoted 𝑋 ) corresponding to the main survey and carry out simulations in R using softImpute, a
popular matrix factorization and missing values imputation package.

We fix a random subset of 25% female and male respondents each as ‘test respondents’ and the remaining respondents
as ‘train-sampling respondents’. 𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 entries of the test respondents are assumed to be unobserved and constitute
the test set. Results in the paper correspond to 𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 = 0.50, 0.75, 0.903. Wemaintain a separate set of test respondents
to ensure that changes in the predictive performance of matrix factorization algorithms are due to ratings elicited from
other individuals and not due to observing more ratings of the test respondents themselves.

To simulate situations where crowdsourced data is not balanced between both genders, varying proportions of
ratings from the train-sampling respondents are assumed to be observed, where the proportion of female train-
sampling respondents varies from 𝜌𝑜𝑏𝑠,𝑓 𝑒𝑚𝑎𝑙𝑒 = 10%, 20% · · · 100% and male train-sampling respondents varies from
𝜌𝑜𝑏𝑠,𝑚𝑎𝑙𝑒 = 10%, 20% · · · 100%. Figure 3 presents a visualization of the simulated matrices thus generated.

Missing values in a single simulated matrix (denoted �̃� ) are imputed by nuclear norm minimization with optimally
selected tuning parameters using softimpute. SoftImpute solves the following optimization problem

min| |�̃� −𝑀 | |2𝑜 + _ | |𝑀 | |∗

where | | · | |𝑜 refers to the Frobenius norm restricted to observed entries of �̃� and | |.| |∗ refers to the nuclear norm [12].
𝑀 is the imputed matrix and _ is the regularization tuning parameter. Mean Squared Error or MSE on the test set is
computed as follows:

𝑀𝑆𝐸 =
1
|Ω |

∑︁
𝑖, 𝑗∈Ω

(
𝑥𝑖 𝑗 −𝑚𝑖 𝑗

)2
.

where Ω refers to the entries in the test set, (𝑖, 𝑗) refers to the row and column indices of these entries, 𝑥𝑖 𝑗 refers to the
true values from the complete matrix 𝑋 and𝑚𝑖 𝑗 the imputed values from matrix𝑀 at these indices. 3 versions of Ω

3We do not consider situations where 100% of test respondent ratings are unobserved since matrix factorization algorithms require that every row has at
least some observed entries.
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In her Shoes: Gendered Labelling in Crowdsourced Safety Perceptions Data from India 7

are considered for each simulation, corresponding to a) all respondents, b) only male respondents and c) only female
respondents in the test set.

A total of 𝑁 = 500 simulations are run for each combination of (𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 ; 𝜌𝑜𝑏𝑠,𝑓 𝑒𝑚𝑎𝑙𝑒 ; 𝜌𝑜𝑏𝑠,𝑚𝑎𝑙𝑒 ) values. The MSE
values are averaged across simulations and compared via contour plots.

Test respondents 
(Female)

Test respondents 
(Male)

Train-sampling 
respondents 
(Female)

Train-sampling 
respondents 
(Male) 

          A    B       C
Test set data
 (Female)

Test set data
 (Male)

Observed data
 (Female)

Observed data
 (Male)

Fig. 3. Visualization of data generation in the simulations. The dataset𝑋 with fully observed ratings across all respondents is separated
into a set of female test respondents, female train-sampling respondents, male test respondents and male train-sampling respondents.
Dark colors represent the observed ratings in the simulated matrix �̃� and light colors represent ratings that are to be imputed. In
each of the subfigures A, B, C 𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 = 0.90 i.e. 90% of ratings of the test respondents is assumed missing and constitute the test
set. In subfigure A, 𝜌𝑜𝑏𝑠,𝑓 𝑒𝑚𝑎𝑙𝑒 = 𝜌𝑜𝑏𝑠,𝑚𝑎𝑙𝑒 = 0.30 ie. 30% entries of both female and male train-sampling respondents is observed.
In subfigure B, 𝜌𝑜𝑏𝑠,𝑓 𝑒𝑚𝑎𝑙𝑒 = 0.20 and 𝜌𝑜𝑏𝑠,𝑚𝑎𝑙𝑒 = 1 and in subfigure C, 𝜌𝑜𝑏𝑠,𝑓 𝑒𝑚𝑎𝑙𝑒 = 1 and 𝜌𝑜𝑏𝑠,𝑚𝑎𝑙𝑒 = 0.1

3.2 Quantitative Data Analysis

The following standard comparison of means 𝑡-tests were run to estimate gender differences in the main survey: a)
gender differences in safety ratings by pooling all ratings in the main survey i.e. a single t-test comparing 106×50 = 5300
female ratings and 118 × 50 = 5900 male ratings, b) gender differences in safety ratings for each of the 50 images
individually i.e. 50 t-tests each comparing 106 female ratings and 118 male ratings; c) gender differences in response
times. From the Day/Night survey we compared the distributions of ratings from day-time and night-time images for
each gender separately.

3.3 Qualitative Data Analysis

Text analysis of the qualitative attributes data was carried out in python using the package nltk. Textual attributes
data was prepared for the anlaysis as follows: i) all words were converted to lower case and punctuation was removed,
ii) typographical errors were removed by going through each set of words starting with a given alphabet and removing
words starting with numbers, iii) stopwords were removed using the inbuilt list of English stopwords, iv) the data was
tokenized and lemmatized. From the resulting data, the top attributes elicited for images rated ‘very unsafe’ and ‘very
safe’ were compared for the two genders.

Simulations were then run to compare the overall distribution of words employed by female and male respondents.
In the simulations, a set of 30 randomly selected female respondents was assigned as the reference group and two
comparison groups consisting of 30 female and male respondents out of the remaining sample were assigned as the
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𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 = 0.50

𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 = 0.75

𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 = 0.90
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Fig. 4. Contour plots of MSE values. Columns correspond to MSE values for a) all respondents, b) only male respondents and c)
only female respondents in the test set. Rows represent simulations where 𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 = 0.50, 0.75, 0.90 respectively ie increasing
proportions of unobserved data within test respondents. Within each contour plot, the 𝑥-axis represents proportion of female
train-sampling respondents’ ratings observed 𝜌𝑜𝑏𝑠,𝑓 𝑒𝑚𝑎𝑙𝑒 and 𝑦-axis represents the proportion of male train-sampling respondents’
ratings observed 𝜌𝑜𝑏𝑠,𝑚𝑎𝑙𝑒 .

female and male reference groups respectively. Kullback-Leibler or KL distance [3] between distributions was calculated
between the reference group and each of the comparison groups. Means of the resulting KL distances from 𝑁 = 500
simulations were compared.

4 RESULTS

4.1 Simulation Results

Figure 4 presents contour plots of MSE values on different test sets across the range of simulations considered. Columns
represent a) all respondents, b) only male respondents only and c) only female respondents in the test set respectively.
Rows represent increasing proportions of unobserved data of the test respondents 𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 = 0.50, 0.75, 0.90 respectively.
Within each contour plot the𝑥-axis corresponds to the proportion of female train-sampling respondents’ ratings observed
i.e. 𝜌𝑜𝑏𝑠,𝑓 𝑒𝑚𝑎𝑙𝑒 and 𝑦-axis corresponds to the proportion of male train-sampling respondents’ ratings observed i.e.
𝜌𝑜𝑏𝑠,𝑚𝑎𝑙𝑒 . The lowest levels of MSE (or highest prediction accuracy) correspond to regions in the contour plots having
darker shades of red.
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When considering the top row (where 𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 = 0.50) we infer that the prediction accuracy on the test set can
almost be decomposed into two gender specific components. From panel C we note that prediction accuracy for female
respondents is highest when we observe a large proportion of female responses in the train-sampling data. Prediction
accuracy even falls when a larger proportion of male labels in the train-sampling data is observed. Panel B shows a
similar pattern for male respondents. This pattern however cannot be inferred from panel A where both female and
male responses are pooled.

While less striking, similar patterns can be inferred from the second (𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 = 0.75) and third (𝜌𝑚𝑖𝑠𝑠,𝑡𝑒𝑠𝑡 = 0.90)
rows. In both cases MSE across all respondents appears to fall with any additional data from either gender, however
if we split the MSE values by gender we find that MSE values for a specific gender fall more when we observe more
ratings from that particular gender. This is demonstrated in the visualizations by the contour regions becoming more
parallel to the 𝑥 − 𝑎𝑥𝑖𝑠 for MSE on test sets of male respondents and more parallel to the 𝑦 − 𝑎𝑥𝑖𝑠 for MSE on test sets
of female respondents.

At low levels of observed ratings, additional ratings from either gender improve prediction accuracy. However
as more ratings from a particular gender are observed, obtaining additional ratings from the other gender is at best
inefficient and at worst undesirable. For instance in panels F and Iwe note that when 𝜌𝑜𝑏𝑠,𝑓 𝑒𝑚𝑎𝑙𝑒 ≈ 0.80, obtaining more
ratings from males doesn’t reduce MSE values for the female test set. In these scenarios collecting more crowdsourced
data from male respondents is inefficient.

More crucial however is the result that in certain cases, obtaining more ratings from male respondents actually
increases the MSE values on the female test set. In both panels C and F we see that MSE values for the female test set
is lowest when 𝜌𝑜𝑏𝑠,𝑓 𝑒𝑚𝑎𝑙𝑒 = 100% and 𝜌𝑜𝑏𝑠,𝑚𝑎𝑙𝑒 < 50%. This increases when 𝜌𝑜𝑏𝑠,𝑚𝑎𝑙𝑒 > 75% indicating a situation
where observing more data from male respondents worsens the predictive accuracy for out-of-sample female ratings.

These plots demonstrate that crowdsourced data collection can lead to algorithmic bias in terms of differing prediction
accuracy for the two genders – large proportions of male data are associated with better prediction accuracy for males
and may even worsen predictions for females and vice versa. This result is crucially important within this particular
context i.e. when data are collected with the express purpose of benefiting a particular group – as is the case for safety
perceptions data in India for women’s safety measurements. As a bare minimum therefore it is essential to have a
metric that captures the underlying gender mix of crowdsourced data in such contexts before proceeding with any
further downstream use of the data.

4.2 Gender differences in quantitative data.

Figure 5(a) plots the distribution of female and male ratings across all images. While the distributions appear to be
overlapping, a comparisons of means t-test estimates that average female safety perception ratings are about 0.12 lower
than average male ratings (statistically significant at 𝛼 < 0.0001) on a 5 point scale. Mean response times by gender
also differ – average response time corresponding to a single rating for females is about 1.64 seconds higher than for
males (statistically significant at 𝛼 < 0.0001) indicating that the cognitive load and decision processes for females when
making subjective safety perceptions is more involved. The distribution of median response times by gender is plotted
in Figure 5(b).

On running comparison of means t-tests for each image separately we find significant differences in average ratings
by gender for 11 of the 50 images – and for each of these images the average female rating is lower. In other words,
whenever there are significant differences between the two genders, females have lower safety perceptions ratings on
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Fig. 5. Gender Differences in quantitative data. Subfigure (a) plots the distributions of ratings across all images in the main survey,
(b) plots the distributions of median response times by gender, (c) plots the distributions of ratings for only those images where there
is a significant gender difference in ratings. Subfigures (d) and (e) plot distributions for the Day/Night survey for female and male
respondents respectively.

average. Figure 5 (c) plots the distribution of female and male ratings across only these 11 images – demonstrating that
the distributions differ visually too, unlike in the case where ratings for all streetviews was pooled.

Figure 5 (d) and (e) plot the distribution of safety ratings from the Day/Night survey for female and male respondents
respectively. These plots represent ratings given to a set of 20 streetviews taken from the same perspective and same
location at both day-time (lighter shades) and night-time (darker shades). Comparing the two plots we note that for both
female and male respondents the distribution of safety ratings shifts left (i.e. towards being more unsafe) for night-time
images. For both genders, the largest mass in the distribution of safety ratings for day-time images is on Rating 3
(somewhat safe) and 4 (very safe). The leftward shift in night-time images however is more pronounced for female
respondents with the largest mass for the night-time ratings being on Rating level 1 (somewhat unsafe) and 0 (very
unsafe). For male respondents there is a visibly lower mass at the lowest safety rating (very unsafe). The distribution of
the day/night survey ratings hints that the gender bias in predictions we saw in the simulations (which were conducted
on a set of day-time images) may get exacerbated further if we were to extend our analysis to include night-time images.

A visual inspection of the 11 streetviews from the main survey where female ratings were significantly lower than
male ratings on average can be used to tease out attributes for which female respondents may have greater negative
associations with safety (Figure 6). Walls or fences appear in multiple photos, as do parked and/or abandoned cars. High
speed roads and disarray are other attributes that are potentially important. Another attribute that is common across
all of these images is the lack of passersby. When present, all but one of the passersby in the frames is male, pointing
to the importance of gender mix of a scene as an important predictor of visual safety [21]. In the next subsection we
analyze gender differences in explicitly elicited safety attributes from respondents.
Manuscript submitted to ACM
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Fig. 6. Streetviews where mean female safety perceptions are significantly lower than mean male safety perceptions.

4.3 Gender differences in qualitative data.

An analysis of textual data by gender reveals that female and male respondents value different attributes while making
subjective safety perception ratings (Table 2). The majority of the top 10 attributes associated with the lowest levels of
perceived safety (‘very unsafe’) elicited from female respondents’ demonstrates that they have a much richer lexicon
when it comes to describing scenes which are lacking in people: ‘[absence of] people’, ‘deserted’, ‘isolated’, ‘lonely’ and
‘secluded’. In the list for males, only ‘lonely’ appears lower down the ranking. The global literature on urban safety
frequently refers to the importance ‘eyes on the street’ [10] – our results verify that this is a predominant concern for
females in the Indian context. Another visual attribute frequently cited by females, ‘wall’ does not show up at all in the
top 30 ranked attributes by males. Interestingly, on the other hand, the [presence of an] ‘animal’ is frequently cited by
male respondents but does not show up in the top 30 ranked attributes by females. This analysis indicates that female
and male respondents have very different mental models of the lack of safety or potential danger.
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Very Unsafe (Rating 0) Very Safe (Rating 4)
Female Male Female Male

‘[absence of] people’ (24) ‘vehicle’ (27) ‘[presence of] people’ (34) ‘[presence of] people’ (50)
‘deserted’ (17) ‘narrow’ (16) ‘residential’ (20) ‘police’ (17)

‘isolated’, ‘narrow’ (14) ‘car’, ‘garbage’ (14) ‘crowded’ (17) ‘park’ (15)
‘garbage’, ‘wall’ (13) ‘animal’ (13) ‘open’ (13) ‘car’ (14)

‘vehicle’ (12) ‘parked’ (12) ‘busy’, ‘park’ (12) ‘locality’, ‘residential’, ‘clean’ (13)
‘lonely’, ‘secluded’ (11) ‘space’, ‘dirty’ (11) ‘traffic’, ‘vehicle’, ‘police’ (11) ‘vehicle’, ‘public’ (11)

‘small’ (10) ‘[car] parking’, ‘lonely’, ‘walking’ (10) ‘station’ (9) ‘society’ (10)
Table 2. Top 10 attributes corresponding to streetviews rated ‘very unsafe’ and ‘very safe’ by gender.

0.50 0.55 0.60 0.65 0.70
KL distance

 

male
female

Fig. 7. Distributions of KL distances of vocabularies for female and male comparison groups with a female reference group across
𝑁 = 500 simulations

There is more overlap between genders in the top attributes corresponding to the highest levels of perceived safety
(‘very safe’). The most common of these is expectedly the same for both genders: ‘[presence of] people’. Another
common characteristic is streets that appear to be within a ‘residential’ ‘society’. The ranking of the other top attributes
indicates that female respondents are more preoccupied by crowds and openness whereas male respondents are more
preoccupied by the presence of authority such as police and by cleanliness.

In order to go beyond comparing only the most frequently elicited attributes, we also run simulation experiments
with textual data to compare the distributions of overall vocabularies associated with safety by gender. Our simulation
experiments reveal that, when compared to a random reference subset of female respondents, the distribution of words
employed by another random subset of female respondents is significantly closer (𝛼 < 0.0001) than that of a random
subset of male respondents. We measure these distances between distributions by computing their KL distances. Figure
7 plots the distributions of KL distances for female and male comparison groups across 𝑁 = 500 simulations. Overall the
simulations provide further evidence that the two genders utilize systematically different vocabularies when describing
safety perceptions.

5 DISCUSSION

Intuitively we would expect that predictions and measurements made for a specific population should be drawn
primarily from data that is representative of that population. Despite this, a number of crowdsourced applications do
not explicitly require disclosure of respondent characteristics. The crowdsourced data thus generated may then be used
in downstream ML models which can in turn influence public perceptions and policies, encoding the biases in data
collection into the policy making exercise [7]. [24] refer to such situations as part of the problem of ‘data cascades’ or
Manuscript submitted to ACM
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‘compounding events causing negative, downstream effects from data issues’ which occur due to a lack of emphasis of
data quality in ML models. In this paper we contextualize potential data cascades from the use of crowdsourced safety
perceptions data for predicting measures of women’s safety.

The main result in this paper demonstrates via extensive simulations that obtaining large amounts of crowdsourced
labels from male respondents for predicting female safety perceptions is likely to be an inefficient way to collect data,
and in some cases may even be undesirable. We find that the highest levels of prediction accuracy for safety ratings
on a test set of female respondents corresponds to large number of ratings from other female respondents. In many
cases adding more crowdsourced labels from male respondents does not lead to any gains in prediction accuracy
and importantly in certain cases, having a very high proportion of male respondents’ ratings actually leads to worse
prediction accuracy for women.

We contextualize and unpack the results of our simulations by doing a detailed investigation of the ratings data and
find that a) female respondents on average systematically rate streets as less safe than male respondents, b) female
respondents on average systematically take longer to make subjective safety ratings hinting at a more complicated
mental model of safety, c) female and male respondents utilize significantly different vocabularies when describing
safe and unsafe locations, d) the underlying notion of safety itself is likely to be gendered. Additionally our analysis
indicates that differences between genders are likely to be exacerbated further when considering night-time images.

Based on our analysis, we caution both researchers and policy makers against the widespread use of data generated
via such crowdsourced data in downstream models without first ensuring that the context of data collection matches
the context within which the models are applied. Consider the potential use-case of developing an algorithm that
generates ‘safe-routes’ from point A to point B. If the data fed into the algorithm is crowdsourced predominantly from
male respondents then it is likely that the resulting routes do not capture aspects of safety that females value.

We recommend the following design choices for platforms utilizing crowdsourced data: 1) explicitly collect basic
demographic information from respondents; 2) crowdsource from specific sub-groups towards whom the platform is
targetted and when appropriate predict for those specific sub-groups only and 3) in the absence of representative data
apply appropriate weights to crowdsourced data to mitigate embedded bias in the system to the extent possible.

The following directions for future research emerge. First, similar empirical exercises in other geographic contexts
where crowdsourced safety perceptions have become more mainstream is imperative, specifically United States where
there is a proliferation of applications that crowdsource safety data and where race is likely to be an important
moderating factor. Second, within India too, other dimensions beyond gender which can lead to crowdsourcing biases
such as caste and economic class merit investigation. Third, case studies of the potential real world consequences
of mainstreaming models built on biased datasets should be conducted: for instance, the possibility of safety score
becoming a proxy for sensitive variables such as race, caste, religion or gender. Finally, a thorough investigation of
what the term ‘safety’ means in different contexts for different populations is warranted. This will contribute to our
understanding of the limits (and opportunities) of utilizing ML models for predicting subjective values.

To our knowledge, our study is among the first attempts to empirically measure potential algorithmic bias in the
context of crowdsourced safety ratings using real world data. In doing so we employ a mixed methods approach,
combining simulations using ML models, standard statistical comparisons and an analysis of qualitative attributes
data. The paper also turns the spotlight on algorithmic bias questions from the perspective of the Global South. This is
important, especially given that the majority of empirical evaluations of algorithmic and machine learning systems
utilize datasets from the US and Europe, despite the fact that many countries in the Global South are now witnessing
massive deployment of AI/ML products [27, 31]. We hope that with this piece helps to shift the discourse towards more
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empirically rigorous evaluations of algorithmic systems utilizing a multi-disciplinary lens, particularly in the Global
South.
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